

PREVALENCE OF STUNTED CHILDREN

Impact indicator, Outcome indicator, SDG indicator, Cluster indicator, DEVCO indicator

Indicator Phrasing

English: % of children aged 6 - 59 months with a height for age < -2 Z scores

French: % d'enfants âgés de 6 à 59 mois avec une taille pour l'âge <-2 Z-scores

Portuguese: % de crianças com idade entre 6-59 meses com um rácio de altura para idade < -2 Z

pontos

Czech: % dětí ve věku 6-59 měsíců s výškově-věkovým poměrem < -2 Z-skóre

What is its purpose?

The indicator measures the number of children whose linear growth has been impaired by chronic malnutrition over a prolonged period of time (during pregnancy and/or their first years of life). It assesses to what degree (so called "Z-score") a child's height for age deviates from the height of a child of the same age and sex in the 2006 WHO Growth Standards.

How to Collect and Analyse the Required Data

Children's height and age are (alongside with other data) assessed by anthropometric surveys using the **SMART methodology** (local events calendars are used to correctly determine a child's age). SMART's website provides all the required guidance, forms, training modules as well as Emergency Nutrition Assessment software used for data analysis and reporting.

According to WHO, the prevalence of stunting (lower than -2 SD) shall be interpreted as:

lower than 20%: low prevalence

20-29%: medium prevalence

30-39%: high prevalence

≥ 40%: very high prevalence

Disaggregate by

<u>Disaggregate</u> the data by gender and age groups (such disaggregation is automatically produced by ENA software).

Important Comments

- 1) The **cut-off points** for moderate stunting are lower than -2 but higher than -3 SD; for severe stunting below -3 SD.
- 2) Reducing the prevalence of chronic undernutrition takes **at least 4-5 years** of a well-designed, multi-sectoral effort. Do not use this indicator for projects which are too short or do not target most of the key causes of chronic undernutrition.
- 3) This indicator relies on accurate age assessment. Since people often do not remember the exact dates of their children's birth, the data collectors should **always verify the child's age**. This can be done by reviewing the child's birth certificate, vaccination card or another document; however, since many caregivers do not have such documents (and since they can include mistakes), it is essential that your data collectors are able to **verify the child's age by using local events calendars**. Read FAO's Guidelines (see below) to learn how to prepare local events calendars and how to train data collectors in their correct use.
- 4) Always make sure that you understand and **follow the local Ministry of Health's official guidance** for conducting anthropometric surveys (e.g. regarding submitting a survey proposal for approval; reporting formats; use of 1977 NCHS versus 2006 WHO growth standards/ MUAC cut-off points; etc.).
- 5) With a larger team of enumerators (8-10 people), **data collection for SMART surveys usually takes about 10 15 working days**. Training takes 6 days (incl. piloting and standardisation test); further time is required for preparing the methodology and logistics.

Access Additional Guidance

- ACF (2014) Rapid SMART Surveys Guidelines
- PIN (2015) Practical Checklist for Conducting Nutrition Surveys
- <u>SMART methodology</u>
- WHO (2010) Interpretation Guide
- FAO (2008) Guidelines for Estimating the Month and Year of Birth of Young Children
- Nutrition Cluster Indicators Registry (incl. thresholds)